8 research outputs found

    Methods for the capture of manufacture best practice in product lifecycle management

    Get PDF
    The capture of manufacturing best practice knowledge in product lifecycle management systems has significant potential to improve the quality of design decisions and minimise manufacturing problems during new product development. However, providing a reusable source of manufacturing best practice is difficult due to the complexity of the viewpoint relationships between products and the manufacturing processes and resources used to produce them. This paper discusses how best to organise manufacturing best practice knowledge, the relationships between elements of this knowledge plus their relationship to product information. The paper also explores the application of UML-2 as a system design tool which can model these relationships and hence support the reuse of system design models over time. The paper identifies a set of part family and feature libraries and, most significantly, the relationships between them, as a means of capturing best practice manufacturing knowledge and illustrates how these can be linked to manufacturing resource models and product information. Design for manufacture and machining best practice views are used in the paper to illustrate the concepts developed. An experimental knowledge based system has been developed and results generated using a power transmission shaft example

    Manufacturing knowledge sharing in PLM: a progression towards the use of heavy weight ontologies

    Get PDF
    The drive to maximize the potential benefits of decision support systems continues to increase as industry is continually driven by the competitive needs of operating in dynamic global environments. The more extensive information support tools which are becoming available in the PLM world appear to have great potential but require a substantial overhead in their configuration. However, sharing information and knowledge in cross-disciplinary teams and across system and company boundaries is not straightforward and there is a clear need for more effective frameworks for information and knowledge sharing if new product development processes are to have effective ICT support. This paper presents a view of the current status of manufacturing information sharing using light-weight ontologies and goes on to discuss the potential for heavyweight ontological engineering approaches such as the Process Specification Language (PSL). It explains why such languages are needed and how they provide an important step towards process knowledge sharing. Machining examples are used to illustrate how PSL provides a rigorous basis for process knowledge sharing and subsequently to illustrate the value of linking foundation and domain ontologies to provide a basis for multi-context knowledge sharing

    Enabling interoperable manufacturing knowledge sharing in PLM

    Get PDF
    Traditional approaches to integrated information sharing fall far short of meeting the requirements for the seamless sharing of knowledge to support enterprise activities through the product lifecycle. Recent advances in ontological approaches to manufacturing knowledge organisation is showing promise that a step change in knowledge sharing capability can be achieved from the application of rigorous logic based languages, combined with methods for modelling context relationships. This paper discusses the issues involved in providing an interoperable manufacturing knowledge sharing environment and proposes a manufacturing foundation ontology as a key requirement for interoperable manufacturing knowledge sharing

    Towards the ontology-based consolidation of production-centric standards

    Get PDF
    Production-­centric international standards are intended to serve as an important route towards information sharing across manufacturing decision support systems. As a consequence of textual-­based definitions of concepts acknowledged within these standards, their inability to fully interoperate becomes an issue especially since a multitude of standards are required to cover the needs of extensive domains such as manufacturing industries. To help reinforce the current understanding to support the consolidation of production-­centric standards for improved information sharing, this article explores the specification of well-defined core concepts which can be used as a basis for capturing tailored semantic definitions. The potentials of two heavyweight ontological approaches, notably Common Logic (CL) and the Web Ontology Language (OWL) as candidates for the task, are also exposed. An important finding regarding these two methods is that while an OWL-­based approach shows capabilities towards applications which may require flexible hierarchies of concepts, a CL-­based method represents a favoured contender for scoped and facts-­driven manufacturing applications

    Extending product lifecycle management for manufacturing knowledge sharing

    Get PDF
    Product lifecycle management provides a framework for information sharing that promotes various types of decisionmaking procedures. For product lifecycle management to advance towards knowledge-driven decision support, then this demands more than simply exchanging information. There is, therefore, a need to formally capture best practice through-life engineering knowledge that can be fed back across the product lifecycle. This article investigates the interoperable manufacturing knowledge systems concept. Interoperable manufacturing knowledge systems use an expressive ontological approach that drives the improved configuration of product lifecycle management systems for manufacturing knowledge sharing. An ontology of relevant core product lifecycle concepts is identified from which viewpoint-specific domains, such as design and manufacture, can be formalised. Essential ontology-based mechanisms are accommodated to support the verification and sharing of manufacturing knowledge across domains. The work has been experimentally assessed using an aerospace compressor disc design and manufacture example. While it has been demonstrated that the approach supports the representation of disparate design and manufacture perspectives as well as manufacturing knowledge feedback in a timely manner, areas for improvement have also been identified for future work

    Exploiting unified modelling language (UML) as a preliminary design tool for Common Logic-based ontologies in manufacturing

    Get PDF
    This paper proposes a particular method which utilises the unified modelling language (UML) as a design visualisation tool for modelling ontologies based on the Common Logic knowledge representation language. The use of this method will enable Common Logic ontological concepts to be more readily accessible to general engineers and provide a valuable ontology design aid. The method proposed is explored using the knowledge frame language (KFL) which provides constructs to facilitate ontology building and is built on Common Logic. The major constructs of KFL are briefly defined and a description of how each construct may be represented in UML is given. Examples are presented showing how the constructs may be modelled in UML and a Common Logic-based implementation founded on a UML design is illustrated and discussed. The manufacturing domain is utilised as an experimental basis for demonstrating the proposed method

    Reference ontologies for manufacturing based ecosystems

    No full text
    There is a clear need for improved semantic communication to support information sharing across engineering groups and their systems in manufacturing industry. This work presents the progress towards the development of a reference ontology for a manufacturing eco-system, focusing particularly on the design and manufacture of aerospace parts. A case study will be presented which illustrates how knowledge, captured from a manufacturing engineer's perspective, can be shared back into the product design process through the use of reference ontologies and appropriate mapping mechanisms

    An exploration of foundation ontologies and verification methods for manufacturing knowledge sharing

    No full text
    This paper presents the current status of the Interoperable Manufacturing Knowledge Systems (IMKS) research project. It sets the work into the context of Model Driven Architectures, explores the value of a manufacturing foundation ontology in the context of the design and manufacture of machined components and illustrates potential routes to knowledge verification across domains. It argues for a foundation ontology combined with specialized domain ontologies as well as verification methods combined with query mechanisms. It goes on to illustrate how the level of effective knowledge sharing can be assessed across multiple product design and manufacturing domains
    corecore